Musical Semantic Embeddings (MuSE)

Motivation

- With the rise of personalized music streaming platforms like Spotify and Apple Music, song recommendation systems have become integral to user experience.
- Current recommendation systems are often computationally expensive, requiring complex models and extensive feature extraction for each individual song.
- We introduce Musical Semantic Embeddings (MuSE), a novel approach inspired by GloVe, using only playlist data to generate robust song embeddings for large-scale recommendation.

Data and Features

- We sampled **527** playlists containing **21,747** unique songs from a Spotify Playlists data set.
- The dataset includes information about playlist names, song names, song artists, and maps each playlist to the list of songs it contains.
- To avoid an excessively sparse co-occurrence matrix, we sampled playlists containing at least one of **10** songs that popular across playlists.
- We used a **80/10/10%** split for train/val/test.

- **Global Co-Occurrence Matrix:** We constructed a co-occurrence matrix M based on the presence of song pairs in playlists.
- High Co-Occurrence Scaling: With precedent from GloVe, we included a scaling term to reduce the weight of frequently co-occurring songs:
- Laplace Smoothing: We reduced the sparsity of the co-occurrence matrix by incrementing co-occurrence values by 1.
- **Optimization:** We used batch gradient descent to minimize the following objective function by taking its gradient:

$$J = \sum_{i,j}$$
t Augmer

ntation: To account for musical similarity from Artist Playlist artists, we augmented our datasets with "artist playlists" as:

$$\left(M_{(i,j)} \leftarrow M_{(i)}\right)$$

Contrastive Learning with NLP: Using BERT embeddings, we made a semantic embedding for playlist titles and used playlist similarity to generate positive and negative examples for contrastive learning:

$$J = \sum_{\{(w_i,w_j,y)\}} y \cdot \Big(1 - \sum_{\{(w_i,w_j,y)\}} y \cdot \Big($$

Experiments, Discussion, and Future Work

- We trained four models, each with Laplace smoothing:
 - (1) MuSE
 - (2) MuSE with Artist Augmentation
 - (3) MuSE with Contrastive NLP Learning Ο
- (4) MuSE with Artist Augmentation + Contrastive NLP Learning • With grid search on the validation set, we trained each model with **150** epochs, learning rate 0.05, and embedding dimension 500.
- Model (4) gave the best results, with a 81.82% F1 score and coherent clustering sorted by artists and genre.
- These results show the effectiveness of the **MuSE** method, which recovers semantic embeddings without looking at audio features.
- Future work should focus on helping MuSE generalize to unseen songs, exploring methods like supplementary neural networks.

Eric Lee and Akshar Sarvesh {ericlee7, asarvesh}@stanford.edu

Methods

$$\lambda_{(i,j)} \leftarrow \left(rac{\lambda_{(i,j)}}{\lambda_{\max}}
ight)^{i}$$

$$\left(\frac{M_{(i,j)}}{M_{\max}}\right)^{\alpha} (w_i^T w_j + b_i + b_j + \log M_{(i,j)})^2$$

(i,j) + 1 if Artist(i) = Artist(j) and $i \neq j, \forall i, j$

 $\frac{w_i^T w_j}{||w_i||_2 \cdot ||w_j||_2} + (1-y) \cdot \max\left(0, \frac{w_i^T w_j}{||w_i||_2 \cdot ||w_j||_2} - m\right)$

Results

Quantitative Evaluation: We assessed the accuracy, precision, recall, and F1 score for each set of embeddings used on a downstream classification task determining whether labeled song pairs are similar or dissimilar.

Model	Accuracy	Precision	Recall	F1
MuSE	65.30%	71.79%	82.35%	76.71%
MuSE + Artist Augmentation	72.22%	77.92%	82.19%	79.98%
MuSE + Contrastive Learning	69.61%	74.07%	85.71%	79.47%
MuSE + Augmentation + Contrastive	74.55%	79.75%	84.00%	81.82%

Qualitative Evaluation: We used t-SNE to reduce the dimensionality of popular songs, and visually assessed the clustering effects of the songs as they pertain to artists, genre, and style.

